Молочная промышленность

Технология производства сухого молока

Распылительная сушка оказалась наиболее подходящей технологией удаления остатков воды из упаренного продукта, так как позволяет превратить концентрат молока в порошок, сохраняя ценные свойства молока.

Принцип действия всех распылительных сушилок состоит в превращении концентрата в мелкие капли, которые подаются в быстрый поток горячего воздуха. В силу очень большой поверхности капель (1 л концентрата распыляется на 1,5×1010 капель диаметром 50мкм с общей поверхностью 120 м2) испарение воды происходит практически мгновенно, и
капли превращаются в частицы порошка.

Одноступенчатая сушка

Одноступенчатая сушка – это процесс распылительной сушки, при котором продукт высушивается до конечной остаточной влажности в камере распылительной сушилки, см. рисунок 1. Теория образования капель и испарения в первом периоде сушки одинакова и для одноступенчатой и для двухступенчатой сушки и излагается здесь.

Рисунок 1 - Распылительная сушилка традиционной конструкции с пневмотранспортнойсистемой (SDP)
Рисунок 1 — Распылительная сушилка традиционной конструкции с пневмотранспортнойсистемой (SDP)

Начальная скорость капель, срывающихся с роторного распылителя, приблизительно равна 150 м/с. Основной процесс сушки протекает, пока капля тормозится под действием трения о воздух. Капли диаметром 100 мкм имеют путь торможения 1м, а капли диаметром 10 мкм – только несколько сантиметров. Основное снижение температуры сушильного воздуха, вызванное испарением воды из концентрата, происходит в этот период.

Гигантский тепло- и массообмен происходит между частицами и окружающим воздухом за очень короткое время, поэтому качество продукта может сильно пострадать, если оставить без внимания те факторы, которые способствуют ухудшению продукта.

При удалении воды из капель происходит значительное уменьшение массы, объема и диаметра частицы. При идеальных условиях сушки масса капли из роторного распылителя
уменьшается приблизительно на 50 %, объем – на 40 %, а диаметр – на 75 %. (см. рисунок 2).

Рисунок 2 - Уменьшение массы, объема и диаметра капли при идеальных условиях сушки
Рисунок 2 — Уменьшение массы, объема и диаметра капли при идеальных условиях сушки

Однако идеальная техника создания капель и сушки пока не разработана. Какое-то количество воздуха всегда включается в концентрат при его перекачивании из выпарного аппарата и особенно при подаче концентрата в питающий резервуар из-за разбрызгивания.

Но и при распылении концентрата роторным распылителем в продукт включается много воздуха, так как диск распылителя действует как вентилятор и подсасывает воздух. Включению воздуха в концентрат можно противодействовать, используя диски специальной конструкции. На диске с загнутыми лопатками (так называемом диске высокой насыпной плотности), см. рисунок 3, воздух под действием все той же центробежной силы частично отделяется от концентрата, а в диске, омываемом паром, см. рисунок 4, проблема частично решается тем, что вместо контакта жидкость-воздух здесь существует контакт жидкость-пар. Считается, что при распылении форсунками воздух не включается в концентрат или включается в очень малой степени. Однако оказалось, что некоторое количество воздуха включается в концентрат на ранней стадии распыления вне и внутри факела распыла из-за трения жидкости о воздух еще до образования капель. Чем выше производительность форсунки (кг/ч), тем больше воздуха попадает в концентрат.

Рисунок 3 - Диск с загнутыми лопатками для производства порошка с высокой насыпной плотностью.
Рисунок 3 — Диск с загнутыми лопатками для производства порошка с высокой насыпной плотностью.
Рисунок 4 - Диск с обдувом паром
Рисунок 4 — Диск с обдувом паром

Способность концентрата включать в себя воздух (т.е. пенообразующая способность) зависит от его состава, температуры и содержания сухого вещества. Оказалось, что концентрат с низким содержанием сухих веществ имеет значительную пенообразующую способность, которая возрастает с температурой. Концентрат с высоким содержанием сухих веществ пенится значительно слабее, что особенно проявляется с возрастанием температуры, см. рисунок 5. Вообще говоря, концентрат цельного молока пенится слабее, чем концентрат обезжиренного молока.

Рисунок 5 - Пенообразующая способность концентрата обезжиренного молока.
Рисунок 5 — Пенообразующая способность концентрата обезжиренного молока.

Таким образом, содержание воздуха в каплях (в форме микроскопических пузырьков) в значительной мере определяет уменьшение объема капли при сушке. Другой, еще более важный фактор, это температура окружающего воздуха. Как уже отмечалось, между сушильным воздухом и каплей происходит интенсивный обмен теплом и водяным паром.

Поэтому вокруг частицы создается градиент температуры и концентрации, так что весь процесс становится сложным и не вполне ясным. Капли чистой воды (активность воды 100 %) при контакте с воздухом, имеющим высокую температуру, испаряются, сохраняя до самого конца испарения температуру смоченного термометра. С другой стороны, продукты, содержащие сухое вещество, при предельной сушке (т.е. при приближении активности воды к нулю) нагреваются к концу сушки до температуры окружающего воздуха, что применительно к распылительной сушилке означает температуру воздуха на выходе. (см. рисунок 6).

Рисунок 6 - Изменение температуры
Рисунок 6 — Изменение температуры

Поэтому градиент концентрации существует не только от центра к поверхности, но и между точками поверхности, в результате разные участки поверхности имеют разную температуру. Общий градиент тем больше, чем больше диаметр частицы, так как это означает меньшую относительную поверхность. Поэтому мелкие частицы высыхают более
равномерно.

При сушке содержание сухих веществ, естественно, увеличивается из-за удаления воды, при этом увеличивается и вязкость, и поверхностное натяжение. Это означает, что коэффициент диффузии, т.е. время и зона диффузионного переноса воды и пара, становится меньше, и из-за замедления скорости испарения происходит перегрев. В предельных случаях происходит так называемое поверхностное твердение, т.е. образование на поверхности жесткой корки, через которую вода и пар или абсорбированный воздух диффундируют
очень медленно. В случае поверхностного твердения остаточная влажность частицы составляет 10-30 %, на этой стадии белки, особенно казеин, очень чувствительны к нагреву и легко денатурируют, в результате образуется трудно растворимый порошок. Кроме того, аморфная лактоза становится твердой и почти непроницаемой для водяных паров, так что температура частицы возрастает еще больше, когда скорость испарения, т.е. коэффициент диффузии, приближается к нулю.

Поскольку внутри частицы остаются водяной пар и пузырьки воздуха, они перегреваются, и если температура окружающего воздуха достаточно высока, пар и воздух расширяются. Давление в частице возрастает, и она раздувается в шар с гладкой поверхностью, см. рисунок 7. Такая частица содержит множество вакуолей, см. рисунок 8. Если температура окружающего воздуха достаточно высока, частица может даже взорваться, но если этого и не произойдет, частица все равно имеет очень тонкую корку, около 1 мкм, и не выдержит механической обработки в циклоне или в системе транспортировки, так что она покинет сушилку с выбросным воздухом. (см. рисунок 9).

Рисунок 7 - Типичная частица после одноступенчатой сушки
Рисунок 7 — Типичная частица после одноступенчатой сушки
Рисунок 8 - Частица после распылительной сушки. Одноступенчатая сушка
Рисунок 8 — Частица после распылительной сушки. Одноступенчатая сушка
Рисунок 9 - Перегретая частица. Одноступенчатая сушка.
Рисунок 9 — Перегретая частица. Одноступенчатая сушка.

Если в частице мало пузырьков воздуха, то расширение даже при перегреве не будет слишком сильным. Однако перегрев в результате поверхностного твердения ухудшает качество казеина, что снижает растворимость порошка.

Если окружающая температура, т.е. температура на выходе из сушилки, поддерживается низкой, то низкой будет и температура частицы.

Температура на выходе определяется многими факторами, главные из которых:

  • содержание влаги в готовом порошке
  • температура и влажность сушильного воздуха
  • содержание сухих веществ в концентрате
  • распыление
  • вязкость концентрата

Содержание влаги в готовом порошке

Первый и важнейший фактор – это содержание влаги в готовом порошке. Чем ниже должна быть остаточная влажность, тем меньше требуемая относительная влажность воздуха на выходе, а это означает более высокую температуру воздуха и частиц.

Температура и влажность сушильного воздуха

Содержание влаги в порошке напрямую связано с влажностью воздуха на выходе, и увеличение подачи воздуха в камеру приведет к чуть большему увеличению расхода выходящего воздуха, так как из-за усиленного испарения в воздухе будет присутствовать больше влаги. Большую роль играет также содержание влаги в сушильном воздухе, и если оно велико, необходимо повысить температуру воздуха на выходе, чтобы компенсировать добавочную влагу.

Содержание сухих веществ в концентрате

Увеличение содержания сухих веществ потребует более высокой температуры на выходе, т.к. испарение идет медленнее (средний коэффициент диффузии меньше) и требует большей разности температур (движущей силы) между частицей и окружающим воздухом.

Распыление

Улучшение распыления и создание более тонкодисперсного аэрозоля позволяет снизить температуру на выходе, т.к. относительная поверхность частиц увеличивается. Из-за этого испарение протекает легче, и движущая сила может быть уменьшена.

Вязкость концентрата

Распыление зависит от вязкости. Вязкость возрастает с увеличением содержания белков, кристаллической лактозы и общего содержания сухих веществ. Нагрев концентрата (не забудьте о загустевании при старении) и увеличение скорости диска распылителя или давления форсунки позволяет решить эту проблему.

Общий КПД сушки выражается следующей приближенной формулой:

Общий КПД сушки

где: Ti — температура воздуха на входе; To — температура воздуха на выходе; Ta — температура окружающего воздуха

Очевидно, что для повышения эффективности распылительной сушки нужно либо увеличить температуру окружающего воздуха, т.е. подогревать отбираемый воздух, например, конденсатом из выпарного аппарата, либо увеличить температуру воздуха на входе, либо понизить температуру на выходе.

Зависимость ζ от температуры служит хорошим показателем эффективности работы сушилки, поскольку температура на выходе определяется остаточной влажностью продукта, которая должна соответствовать определенному стандарту. Высокая температура на выходе означает, что сушильный воздух используется не оптимально, например, из-за плохого распыления, плохого распределения воздуха, высокой вязкости и т.д.

У нормальной распылительной сушилки, обрабатывающей обезжиренное молоко (Ti = 200°C, To = 95°C), ζ ≈ 0,56.

Обсуждавшаяся до сих пор технология сушки относилась к установке с системой пневмотранспорта и охлаждения, в которой выгружаемый со дна камеры продукт высушен до требуемого содержания влаги. На этой стадии порошок теплый и состоит из слипшихся частиц, очень слабо связанных в большие рыхлые агломераты, образовавшиеся при первичной агломерации в факеле распыла, где частицы разного диаметра обладает разной скоростью и поэтому сталкиваются. Однако при прохождении через систему пневмотранспорта агломераты подвергаются механическому воздействию и рассыпаются на отдельные частицы. Этот тип порошка, (см. рисунок 10), можно охарактеризовать следующим образом:

  • отдельные частицы
  • высокая насыпная плотность
  • пыление, если это сухое обезжиренное молоко
  • не быстрорастворимый
Рисунок 10 - Микрофотография сухого обезжиренного молока из установки с пневмотранспортной системой
Рисунок 10 — Микрофотография сухого обезжиренного молока из установки с пневмотранспортной системой

Двухступенчатая сушка

Температура частицы определяется температурой окружающего воздуха (температурой на выходе). Поскольку связанная влага трудно удаляется традиционной сушкой, температура на выходе должна быть достаточно высокой, чтобы обеспечить движущую силу (Δt, т.е. разность температур между частицей и воздухом), способную удалить остаточную влагу. Очень часто это ухудшает качество частиц, как обсуждалось выше.

Поэтому не удивительно, что была разработана совершенно иная технология сушки, предназначенная для испарения из таких частиц последних 2-10 % влаги.

Поскольку испарение на этой стадии из-за низкого коэффициента диффузии идет очень медленно, оборудование для досушивания должно быть таким, чтобы порошок оставался в нем длительное время. Такую сушку можно проводить в пневмотранспортной системе, используя горячий транспортирующий воздух для увеличения движущей силы процесса.

Однако, поскольку скорость в транспортном канале должна быть 20 м/с, для эффективной сушки потребуется канал значительной длины. Другая система, это так называемая “горячая камера” с тангенциальным входом для увеличения времени выдержки. По завершении сушки порошок отделяется в циклоне и поступает в другую пневмотранспортную систему с холодным или осушенным воздухом, где порошок охлаждается. После отделения в циклоне порошок готов к упаковке в мешки.

Другая система досушки – это аппарат VIBRO-FLUIDIZER, т.е. большая горизонтальная камера, разделенная приваренной к корпусу перфорированной пластиной на верхнюю и нижнюю секции. (рисунок 11). Для сушки и последующего охлаждения в распределительные камеры аппарата подается теплый и холодный воздух и равномерно распределяется по рабочей зоне специальной перфорированной пластиной, BUBBLE PLATE.

Рисунок 11 - Vibro-Fluidizer санитарной конструкции
Рисунок 11 — Vibro-Fluidizer санитарной конструкции

Это дает следующие преимущества:

  • Воздух направляется вниз, к поверхности пластины, поэтому частицы движутся по пластине, которая имеет редкие, но большие отверстия и поэтому может долго работать без чистки. Кроме того, она очень хорошо освобождается от порошка.
  • Уникальный способ изготовления предотвращает образование трещин. Поэтому BUBBLE PLATE отвечает строгим санитарным требованиям и разрешена USDA.

Размер и форма отверстий и расход воздуха определяются скоростью воздуха, необходимой для псевдоожижения порошка, которая в свою очередь определяется свойствами порошка, такими как содержание влаги и термопластичность.

Температура определяется требуемым испарением. Размер отверстий выбирается так, чтобы скорость воздуха обеспечивала псевдоожижение порошка на пластине. Скорость воздуха не должна быть слишком большой, чтобы агломераты не разрушались от истирания. Однако невозможно (а иногда и не желательно) избежать уноса некоторых (особенно мелких) частиц из псевдоожиженного слоя с воздухом. Поэтому воздух должен пройти через циклон или рукавный фильтр, где частицы отделяются и возвращаются в процесс.

Это новое оборудование позволяет бережно испарить из порошка последние проценты влаги. Но это означает, что распылительную сушилку можно эксплуатировать способом, отличным от описанного выше, при котором выходящий из камеры порошок имеет влажность готового продукта.

Преимущества двухступенчатой сушки можно резюмировать следующим образом:

  • более высокая производительность на кг сушильного воздуха
  • повышенная экономичность
  • лучшее качество продукта:
  1.  хорошая растворимость
  2.  высокая насыпная плотность
  3.  низкое содержание свободного жира
  4.  низкое содержание абсорбированного воздуха
  • Меньшие выбросы порошка

Ожиженный слой может быть либо виброкипящим слоем поршневого типа (VibroFluidizer), либо неподвижным псевдоожиженным слоем обратного смешивания.

Двухступенчатая сушка в аппарате Vibro-Fluidizer (поршневой поток)

В аппарате Vibro-Fluidizer весь псевдоожиженный слой вибрирует. Перфорации в пластине сделаны так, чтобы сушильный воздух направлялся вместе с потоком порошка. Для того чтобы перфорированная пластина не вибрировала с собственной частотой, она установлена на специальных опорах. (см. рисунок 12).

Рисунок 13 - Распылительная сушилка с аппаратом Vibro-Fluidizer для двухступенчатой сушки
Рисунок 12 — Распылительная сушилка с аппаратом Vibro-Fluidizer для двухступенчатой сушки

Распылительная сушилка работает с меньшей температурой на выходе, что приводит к увеличению влагосодержания и снижению температуры частиц. Влажный порошок выгружается самотеком из сушилной камеры в Vibro-Fluidizer.

Существует, однако, предел снижения температуры, так как из-за возросшей влажности порошок становится липким даже при меньшей температуре и образует комки и отложения в камере.

Обычно применение аппарата Vibro-Fluidizer позволяет снизить температуру на выходе на 10-15 °С. Это приводит к гораздо более мягкой сушке, особенно на критической стадии процесса (от 30 до 10 % влажности), усыхание частиц (см. рисунок 13) не прерывается поверхностным твердением, так что условия сушки близки к оптимальным. Более низкая температура частиц отчасти обусловлена более низкой температурой окружающего воздуха, но также и более высоким содержанием влаги, так что температура частиц оказывается близкой к температуре смоченного термометра. Это, естественно, положительно сказывается на растворимости готового порошка.

Рисунок 13 - Типичная частица после двухступенчатой сушки
Рисунок 13 — Типичная частица после двухступенчатой сушки

Уменьшение температуры на выходе означает более высокий КПД сушильной камеры в силу увеличения Δt. Очень часто сушку проводят при более высокой температуре и при более высоком содержании сухих веществ в сырье, что еще больше повышает КПД сушилки. При этом, конечно, возрастает и температура на выходе, но повышенное содержание влаги снижает температуру частиц, так что перегрев и поверхностное твердение частиц не происходят.

Опыт показывает, что температура сушки может достигать 250 °С или даже 275 °С при сушке обезжиренного молока, что поднимает КПД сушки до 0,75.

Частицы, достигающие дна камеры, имеют более высокую влажность и более низкую температуру, чем при традиционной сушке. Со дна камеры порошок попадает непосредственно в сушильную секцию аппарата Vibro-Fluidizer и немедленно ожижается. Любая выдержка или транспортирование приведут к слипанию теплых влажных термопластичных частиц и образованию трудно разрушаемых комков. Это снизило бы эффективность сушки в аппарате Vibro-Fluidizer и часть готового порошка имела бы слишком высокую влажность, т.е. качество продукта пострадало бы.

Самотеком поступает в Vibro-Fluidizer только порошок из сушильной камеры. Мелочь из основного циклона и из циклона, обслуживающего Vibro-Fluidizer, (или из моющегося рукавного фильтра) подается в Vibro-Fluidizer транспортной системой.

Поскольку эта фракция представлена частицами меньшего размера, чем порошок из сушильной камеры, влажность частиц меньше, и они не требуют той же степени вторичной сушки. Очень часто они являются достаточно сухими, тем не менее, их обычно подают в последнюю треть секции сушки аппарата Vibro-Fluidizer, чтобы гарантировать требуемое содержание влаги в продукте.

Точку выгрузки порошка из циклона не всегда можно расположить непосредственно над аппаратом Vibro-Fluidizer, чтобы порошок поступал в секцию сушки самотеком. Поэтому для перемещения порошка часто применяют нагнетательную пневмотранспортную систему. Нагнетательная пневмотранспортная система позволяет легко доставить порошок в любую часть установки, поскольку транспортная линия обычно представлена 3-х или 4-х дюймовой молочной трубой. Система состоит из воздуходувки с малым расходом и высоким давлением и продувного клапана, и обеспечивает сбор и транспортировку порошка, см. рисунок 14. Количество воздуха невелико относительно количества транспортируемого порошка (всего 1/5).

Рисунок 14 - Нагнетательная пневмотранспортная система между аппаратом Vibro-Fluidizer и бункерами
Рисунок 14 — Нагнетательная пневмотранспортная система между аппаратом Vibro-Fluidizer и бункерами

Небольшая часть этого порошка опять уносится воздухом из аппарата Vibro-Fluidizer, а затем транспортируется из циклона обратно в Vibro-Fluidizer. Поэтому, если не предусмотреть специальных устройств, при останове сушилки требуется определенное время для прекращения такой циркуляции.

Например, можно установить в транспортной линии распределительный клапан, который будет направлять порошок в самую последнюю часть аппарата Vibro-Fluidizer, откуда он будет выгружен за несколько минут.

На заключительном этапе порошок просеивается и упаковывается в мешки. Поскольку порошок может содержать первичные агломераты, рекомендуется направлять его в бункер посредством еще одной нагнетательной пневмотранспортной системы, чтобы увеличить насыпную плотность.

Общеизвестно, что при испарении воды из молока расход энергии на кг выпаренной воды увеличивается с приближением остаточной влаги к нулю. (рисунок 15).

Рисунок 15 - Расход энергии на кг испаренной воды как функция остаточной влажности
Рисунок 15 — Расход энергии на кг испаренной воды как функция остаточной влажности

Эффективность сушки зависит от температуры воздуха на входе и выходе.

Если расход пара в выпарном аппарате составляет 0,10-0,20 кг на кг испаренной воды, то в традиционной одноступенчатой распылительной сушилке он равен 2,0-2,5 кг на кг испаренной воды, т.е. в 20 раз выше, чем в выпарном аппарате. Поэтому всегда предпринимались попытки увеличить содержание сухих веществ в упаренном продукте. Это означает, что выпарной аппарат будет удалять большую долю воды, а расход энергии снизится.

Конечно, это слегка увеличит расход энергии на кг испаренной воды в распылительной сушилке, но общий расход энергии снизится.

Указанный выше расход пара на кг испаренной воды – это средний показатель, поскольку расход пара в начале процесса гораздо ниже, чем в конце сушки. Расчеты показывают, что для получения порошка с влажностью 3,5 % требуется 1595 ккал/кг порошка, а для получения порошка с влажностью 6 % — только 1250 ккал/кг порошка. Другими словами, последний этап испарения требует приблизительно 23 кг пара на кг испаренной воды.

Рисунок 16 - Коническая часть распылительной сушилки присоединенный к ней Vibro-Fluidizer
Рисунок 16 — Коническая часть распылительной сушилки присоединенный к ней Vibro-Fluidizer

Таблица иллюстрирует эти расчеты. Первый столбец отражает рабочие условия в традиционной установке, где порошок из сушильной камеры направляется в циклоны системой пневмотранспорта и охлаждения. Следующий столбец отражает рабочие условия в двухступенчатой сушилке, в которой сушка от 6 до 3,5 % влажности осуществляется в аппарате Vibro-Fluidizer. Третий столбец представляет двухступенчатую сушку при высокой температуре на входе.

Таблица 1- Системы сушки
Таблица 1- Системы сушки

Из показателей, отмеченных знаком *), находим:    1595 – 1250 = 345 ккал/кг порошка

Испарение на кг порошка составляет: 0,025 кг ( 6 % — 3,5 % + 2,5 %

Значит, расход энергии на кг испаренной воды равен: 345/0,025 = 13,800  ккал/кг, что соответствует 23 кг греющего пара на кг испаренной воды.

В аппарате Vibro-Fluidizer средний расход пара составляет 4 кг на кг испаренной воды, естественно, он зависит от температуры и расхода сушильного воздуха. Даже если расход пара в аппарате Vibro-Fluidizer вдвое выше, чем в распылительной сушилке, расход энергии на испарение того же количества воды все равно оказывается гораздо ниже (поскольку время обработки продукта составляет 8-10 минут, а не 0-25 секунд, как в распылительной сушилке). И при этом производительность такой установки больше, качество продукта выше, выбросы порошка ниже, а функциональные возможности шире.

Двухступенчатая сушка с неподвижным псевдоожиженнымслоем (с обратным смешением)

Для улучшения КПД сушки, температура воздуха на выходе To при двухступенчатой сушке уменьшена до того уровня, при котором порошок с содержанием влаги 5-7 % становится липким и начинает оседать на стенках камеры.

Однако создание псевдоожиженного слоя в конической части камеры обеспечивает дальнейшее усовершенствование процесса. Воздух для вторичной сушки подается в камеру под перфорированной пластиной, через которую распределяется по слою порошка. Такой тип сушилки может работать в режиме, при котором первичные частицы высыхают до влажности 8-12 %, что соответствует температуре воздуха на выходе 65-70 °С. Такая утилизация сушильного воздуха позволяет значительно уменьшить размеры установки при той же производительности сушилки.

Сухое молоко всегда считалось трудным для псевдоожижения. Однако пластина специальной запатентованной конструкции, см. рисунок 17, обеспечивает движение воздуха и порошка в том же направлении, в котором движется первичный сушильный воздух. Эта пластина при условии правильного выбора высоты слоя и скорости начала псевдоожижения позволяет создавать статический псевдоожиженный слой для любого выработанного из молока продукта.

 

Рисунок 17 - Перфорированная пластина для направленной подачи воздуха (BUBBLE PLATE)
Рисунок 17 — Перфорированная пластина для направленной подачи воздуха (BUBBLE PLATE)

Выпускаются аппараты со статическим псевдоожиженным слоем (SFB) трех конфигураций:

  • с кольцевым псевдоожиженным слоем (сушилки Compact)
  • с циркуляционным псевдоожиженным слоем (сушилки MSD)
  • с комбинацией таких слоев (сушилки IFD)
Рисунок 18 - Компактная распылительная сушилка (CDI)
Рисунок 18 — Компактная распылительная сушилка (CDI)
Рисунок 19 - Многоступенчатая распылительная сушилка (MSD)
Рисунок 19 — Многоступенчатая распылительная сушилка (MSD)

Кольцевой псевдоожиженный слой (сушилки Compact)

Кольцевой псевдоожиженный слой обратного смешения располагается в нижней части конуса традиционной сушильной камеры вокруг центральной трубы отвода отработанного воздуха. Таким образом, в конической части камеры нет деталей, мешающих потоку воздуха, и это вместе со струями, выходящими из псевдоожиженного слоя, предотвращает образование отложений на стенках конуса даже при обработке липких порошков с высоким содержанием влаги. Цилиндрическая часть камеры защищена от отложений системой обдува стенок: небольшое количество воздуха тангенциально подается с высокой скоростью через сопла специальной конструкции в том же направлении, в котором закручивается первичный сушильный воздух.

В силу вращения воздушно-пылевой смеси и возникающего в камере эффекта циклона только небольшое количество порошка уносится отработанным воздухом. Поэтому доля порошка, попадающего в циклон или моющийся рукавный фильтр, так же как и выбросы порошка в атмосферу, для этого типа сушилок снижены.

Порошок непрерывно выгружается из псевдоожиженного слоя, перетекая через перегородку регулируемой высоты, таким образом поддерживается определенный уровень псевдоожиженного слоя.

Из-за низкой температуры воздуха на выходе эффективность сушки значительно увеличена по сравнению с традиционной двухступенчатой сушкой см. таблицу.

Технология производства сухого молока

После выхода из сушильной камеры порошок может охлаждаться в пневмотранспортной системе см. рисунок 20. Образующийся порошок состоит из отдельных частиц и имеет такую же или лучшую насыпную плотность, чем полученный двухступенчатой сушкой.

Рисунок 20 - Компактная распылительная сушилка с пневмотранспортной системой (CDP)
Рисунок 20 — Компактная распылительная сушилка с пневмотранспортной системой (CDP)

Продукты, содержащие жир, следует охлаждать в виброожиженном слое, в котором одновременно осуществляется агломерация порошка. В этом случае фракция мелочи возвращается из циклона в распылитель для агломерации. (см. рисунок 21).

Рисунок 21 - Компактная распылительная сушилка с аппаратом Vibro-Fluidizer в качестве агломератора-инстантизатора (CDI)
Рисунок 21 — Компактная распылительная сушилка с аппаратом Vibro-Fluidizer в качестве агломератора-инстантизатора (CDI)

Циркуляционный псевдоожиженный слой (сушилки MSD)

Для еще большего повышения КПД сушки без создания проблем с налипанием отложений была разработана совершенно новая концепция распылительной сушилки — MultiStage Dryer (многоступенчатая сушилка), MSD.

В этом аппарате сушка выполняется в три ступени, каждая из которых приспособлена к характерной для нее влажности продукта. На ступени предварительной сушки концентрат распыляется прямоточными форсунками, расположенными в канале горячего воздуха.

Воздух подается в сушилку вертикально с высокой скоростью через воздухораспределитель, который обеспечивает оптимальное смешивание капель с сушильным воздухом. Как уже отмечалось, на этой испарение протекает мгновенно, пока капли движутся вертикально вниз через сушильную камеру специальной конструкции. Содержание влаги в частицах снижается до 6-15 %, в зависимости от типа продукта. При такой высокой влажности порошок обладает высокой термопластичностью и липкостью. Поступающий с высокой скоростью воздух создает эффект Вентури, т.е. подсасывает окружающий воздух и увлекает мелкие частицы во влажное облако вблизи распылителя. Это приводит к “спонтанной вторичной агломерации”. Поступающий снизу воздух имеет достаточную скорость для псевдоожижения слоя осевших частиц, а его температура обеспечивает вторую ступень сушки. Воздух, выходящий из этого псевдоожиженного слоя возвратного смешивания, вместе с отработанным воздухом первой ступени сушки выходит из камеры сверху и подается в первичный циклон. Из этого циклона порошок возвращается в псевдоожиженный слой обратного смешивания, а воздух подается во вторичный циклон для конечной очистки.

Когда влажность порошка снижается до определенного уровня, он выгружается через роторный затвор в Vibro-Fluidizer для завершающей сушки и последующего охлаждения.

Сушильный и охлаждающий воздух из аппарата Vibro-Fluidizer проходит через циклон, где от него отделяется порошок. Этот мелкий порошок возвращается в распылитель, в коническую часть камеры (в статический псевдоожиженный слой) или в Vibro-Fluidizer. В современных сушилках циклоны заменяются рукавными фильтрами с СИП.

В установке образуется грубодисперсный порошок, что обусловлено “спонтанной вторичной агломерацией” в облаке распылителя, где постоянно поднимающиеся снизу сухие мелкие частицы налипают на полусухие частицы, образуя агломераты. Процесс агломерации продолжается, когда распыленные частицы вступают в контакт с частицами псевдоожиженного слоя. (см. рисунок 22).

Такую установку можно эксплуатировать при очень высокой температуре воздуха на входе (220-275 °С) и чрезвычайно коротком времени контакта, достигая, тем не менее, хорошей растворимости порошка. Такая установка очень компактна, что снижает требования к размерам помещения. Это, а также сниженная за счет более высокой температуры на входе стоимость эксплуатации (на 10-15 % меньше по сравнению с традиционной двухступенчатой сушкой), делает такое решение очень привлекательным, особенно для агломерированных продуктов.

Рисунок 22 - Многоступенчатая распылительная сушилка (MSD).
Рисунок 22 — Многоступенчатая распылительная сушилка (MSD)

Распылительная сушка с встроенными фильтрами и псевдоожиженными слоями (IFD)

Запатентованная конструкция сушилки с встроенным фильтром, (рисунок 23), использует проверенные системы распылительной сушки, такие как:

  • Система подачи с подогревом, фильтрованием и гомогенизацией концентрата, оборудованная высоконапорными насосами. Оборудование такое же, как в традиционных распылительных сушилках.
  • Распыление производится либо струйными форсунками, либо атомайзером. Струйные форсунки применяются, в основном, для жирных или продуктов с высоким содержанием белка, а роторные распылители – для любых продуктов, и особенно тех, которые содержат кристаллы.
  • Сушильный воздух фильтруется, нагревается и распределяется устройством, которое создает вращающийся или вертикальный поток.
  • Сушильная камера сконструирована так, чтобы обеспечить максимальную гигиеничность и предельно снизить потери тепла, например, благодаря использованию съемных
    пустотелых панелей.
  • Встроенный псевдоожиженный слой представляет собой комбинацию слоя обратного смешения для сушки и слоя поршневого типа для охлаждения. Аппарат с псевдоожиженным слоем – полностью сварной и не имеет полостей. Между слоем обратного смешения и окружающим его слоем поршневого типа имеется воздушный зазор для предотвращения переноса теплоты. Здесь используются новые запатентованные пластины Niro BUBBLE PLATE.
Рисунок 23 - Сушилка с встроенным фильтром
Рисунок 23 — Сушилка с встроенным фильтром

Система удаления воздуха, при всей революционной новизне, основана на тех же принципах, что и рукавный фильтр Niro SANICIP Мелочь собирается на фильтрах, встроенных в сушильную камеру. Рукава фильтра опираются на сетки из нержавеющей стали, прикрепленные к потолку по окружности сушильной камеры. Эти фильтрующие элементы очищаются обратной продувкой, как и фильтр SANICIP™.

Рукава продуваются по одному или по четыре за раз струей сжатого воздуха, которая подается в рукав через сопло. Это обеспечивает регулярное и частое удаление порошка, который падает в псевдоожиженный слой.

Здесь используется тот же фильтрующий материал, что и в рукавном фильтре SANICIP™, и обеспечивается такой же расход воздуха на единицу площади материала.

Сопла обратной продувки выполняют две функции. При работе сопло служит для продувки, а при безразборной мойке через него подается жидкость, промывающая рукава изнутри наружу, к грязной поверхности. Чистая вода впрыскивается через сопло обратной продувки, распыляется сжатым воздухом по внутренней поверхности рукава и выдавливается наружу. Эта запатентованная схема очень важна, поскольку промывкой снаружи очистить фильтрующий материал очень трудно или невозможно.

Для чистки нижней стороны потолка камеры вокруг рукавов применяются форсунки специальной конструкции, также играющие двойную роль. Во время сушки через форсунку подается воздух, предотвращающий отложения порошка на потолке, а при мойке она используется как обычная CIP-форсунка. Камера чистого воздуха очищается стандартной форсункой безразборной мойки.

Преимущества установки IFD™

Продукт

  • Более высокий выход первосортного порошка. В традиционных сушилках с циклонами и рукавными фильтрами из фильтров собирается продукт второго сорта, доля которого составляет приблизительно 1 %.
  • Продукт не подвергается механическому воздействию в каналах, циклонах и рукавных фильтрах, устраняется необходимость в возврате мелочи из внешних сепараторов, поскольку распределение потоков внутри сушилки обеспечивает оптимальную первичную и вторичную агломерацию.
  • Качество продукта улучшается, поскольку установка IFD™ может работать при более низкой температуре воздуха на выходе, чем традиционная распылительная сушилка. Это означает, что можно достичь более высокой производительности сушки на кг воздуха.

Безопасность

  • Система защиты проще, поскольку весь процесс сушки протекает в одном аппарате.
  • Защиты требует меньшее число компонентов.
  • Стоимость обслуживания ниже

Проектирование

  • Более простая установка
  • Меньшие размеры здания
  • Более простая опорная конструкция

Защита окружающей среды

  • Меньшая возможность утечки порошка внутрь рабочей зоны
  • Более простая очистка, так как площадь контакта оборудования с продуктом сокращена.
  • Меньший объем стоков при безразборной мойке
  • Меньший выброс порошка, до 10-20 мг/нм3.
  • Экономия энергии до 15 %
  • Меньший уровень шума в связи с меньшим падением давления в вытяжной системе